If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121+x^2=180
We move all terms to the left:
121+x^2-(180)=0
We add all the numbers together, and all the variables
x^2-59=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $
| 5x−7=−52 | | 5(x+4)-2(x-3)=50 | | 53−(2c+4)=4(c+7)+c | | -6(h+35)=60 | | -45=5m=-73 | | -2.5x+13=18 | | 5/9g+8=1/6+1 | | 3(4)(-7)+(4x)=24 | | -44+2f=-2 | | 14=15-(2y+7) | | 5/3x+1/3x=171/3x+7/3x | | 8x-3=4x+15 | | 6x+5=3x=14 | | A=s^ | | n=36-(5n) | | r+51/6=10 | | 25-3x=17+5x | | 2/3x-2=3/2+1/6 | | 5(b–73)=40 | | 13t-3=-46 | | 2=x/4+3 | | 3/p-5=-8 | | 4y-10=38 | | 46+x+5=180 | | -21=x/5+4 | | 8x+14=29+2x | | -15-v-40=23-8v | | 8b+3=99 | | 48(x-44)=x | | 3x+4+5x+1+2x+5=92 | | 2x+3x=-6=19 | | w-38/9=4 |